Convergence of the point integral method for Laplace–Beltrami equation on point cloud
نویسندگان
چکیده
منابع مشابه
Convergence of the point integral method for Laplace–Beltrami equation on point cloud
The Laplace–Beltrami operator, a fundamental object associated with Riemannian manifolds, encodes all intrinsic geometry of manifolds and has many desirable properties. Recently, we proposed the point integral method (PIM), a novel numerical method for discretizing the Laplace–Beltrami operator on point clouds (Li et al. in Commun Comput Phys 22(1):228–258, 2017). In this paper, we analyze the ...
متن کاملConvergence of the Point Integral Method for the Poisson Equation on Manifolds Ii: the Dirichlet Boundary
The Poisson equation on manifolds plays an fundamental role in many applications. Recently, we proposed a novel numerical method called the Point Integral method (PIM) to solve the Poisson equations on manifolds from point clouds. In this paper, we prove the convergence of the point integral method for solving the Poisson equation with the Dirichlet boundary condition.
متن کاملSolutions of diffusion equation for point defects
An analytical solution of the equation describing diffusion of intrinsic point defects in semiconductor crystals has been obtained for a one-dimensional finite-length domain with the Robin-type boundary conditions. The distributions of point defects for different migration lengths of defects have been calculated. The exact analytical solution was used to verify the approximate numerical solutio...
متن کاملA novel method for locating the local terrestrial laser scans in a global aerial point cloud
In addition to the heterogeneity of aerial and terrestrial views, the small scale terrestrial point clouds are hardly comparable with large scale and overhead aerial point clouds. A hierarchical method is proposed for automatic locating of terrestrial scans in aerial point cloud. The proposed method begins with detecting the candidate positions for the deployment of the terrestrial laser scanne...
متن کاملA strong convergence theorem for solutions of zero point problems and fixed point problems
Zero point problems of the sum of two monotone mappings and fixed point problems of a strictly pseudocontractive mapping are investigated. A strong convergence theorem for the common solutions of the problems is established in the framework of Hilbert spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Research in the Mathematical Sciences
سال: 2017
ISSN: 2197-9847
DOI: 10.1186/s40687-017-0111-3